Mathematical Analysis of Optimal Control of Human Immunodeficiency Virus (HIV) Co-infection with Tuberculosis (TB)

PDF Review History

Published: 2024-01-11

Page: 23-53


Olopade Isaac Adesola *

Department of Mathematics and Statistics, Federal University Wukari, P.M.B. 1020, Taraba State, Nigeria.

Mohammed Idayat Temilade

Department of Mathematics and Social Sciences, Osun State Polytechnic Iree, Nigeria.

Philemon Musa Emmanuel

Department of Mathematics and Statistics, Federal University Wukari, P.M.B. 1020, Taraba State, Nigeria.

Ajao Saheed Oladele

Department of Mathematics and Computer Science, Elizade University, Ondo State, Nigeria.

Adeniran Gbenga Adeyemi

Department of Physical Sciences, Chrisland University, P.M.B. 2131, Abeokuta, Ogun State, Nigeria.

Sagoniyi Sunday

Department of Mathematics and Computing Science Education, Emmanuel Alayande University of Education, Oyo, Oyo State, Nigeria.

Adewale Sunday Olumuyiwa

Department of Pure and Applied Mathematics, LAUTECH Ogbomoso, P.M.B. 4000, Ogbomoso, Oyo State, Nigeria.

*Author to whom correspondence should be addressed.


Abstract

The co-occurrence of Human Immunodeficiency Virus (HIV) and Tuberculosis (TB) poses a significant global health challenge, affecting an estimated 1.4 million individuals worldwide. The synergistic progression of these diseases contributes to elevated morbidity and mortality rates. Recognizing the substantial public health burden they impose, this study introduces fifteen (15) compartmental models to discern optimal control strategies for treating HIV-TB co-infection. Initial consideration is given to sub-models for HIV and TB individually, followed by the comprehensive HIV-TB co-infection model. The research quantitatively analyzes the existence and uniqueness of HIV and TB models, examining the stability of equilibrium points for disease-free and endemic states. The Basic Reproduction Number (R0) is computed using the Next Generation Matrix method. Optimal control strategies are evaluated to determine the preferred sequence for treating co-infection. Employing MAPLE software with the differential transformation method, numerical simulations underscore the importance of epidemiological features in the dynamic spread of HIV-TB co-infection. The results emphasize the efficacy of simultaneous treatment for both diseases, coupled with immune system support, compared to sequential treatment of one disease.

Keywords: HIV, TB, reproduction number, equilibrium points, stability, optimal


How to Cite

Adesola, O. I., Temilade, M. I., Emmanuel, P. M., Oladele , A. S., Adeyemi, A. G., Sunday, S., & Olumuyiwa, A. S. (2024). Mathematical Analysis of Optimal Control of Human Immunodeficiency Virus (HIV) Co-infection with Tuberculosis (TB). Asian Research Journal of Current Science, 6(1), 23–53. Retrieved from https://jofscience.com/index.php/ARJOCS/article/view/7

Downloads

Download data is not yet available.

References

Abdullahi OA, Ngari MM, Sanga D, Katana G, Willetts A. Mortality during treatment for tuberculosis; A review of surveillance data in a rural county in Kenya. Plos One. 2019;14(7):e0219191.

Adeniran GA, Olopade IA, Ajao SO, Akinrinmade VA, Aderele OR, Adewale SO. Sensitivity and mathematical analysis of malaria and cholera co-infection. Asian J Pure Appl Math. 2022.

Adewale SO, Olopade IA, Ajao SO, Adeniran GA. Mathematical analysis of diarrhea in the presence of vaccine. Int J Sci Eng Res. 2015;6(12):396-404.

Adewale SO, Olopade IA, Adeniran GA, Ajao SO. Mathematical modelling and sensitivity analysis of HIV-TB co-infection. Adv Math. 2015;11(8):5494-519.

Ajao S, Olopade I, Akinwumi T, Adewale S, Adesanya A. Understanding the transmission dynamics and control of HIV infection: A mathematical model approach. J Nig Soc Phys Sci. 2023;5(2):1389..

Akinwumi TO, Olopade IA, Adesanya AO, Alabi MO. A mathematical model for the transmission of HIV/AIDS with early treatment. J Adv Math Comput Sci. 2021;36(5):35-51.

[cited Jan 3 2020] Available from: https://www.who.int/news-room/fact-sheets/detail/hiv-aids.

[cited Jan 3 2020] Available from: https://www.who.int/tb/areas-of-work/tb-hiv/en/.

Becerra MC, Pachao-Torreblanca IF, Bayona J, Celi R, Shin SS, Kim JY et al. Expanding tuberculosis case detection by screening household contacts. Public Health Rep. 2005;120(3):271-7.

Colijn C, Cohen T, Murray M. Emergent heterogeneity in declining tuberculosis epidemics. J Theor Biol. 2007;247(4):765-74.

Daniel O, Andrei K. Dynamics of tuberculosis: The effect of direct observation therapy strategy (DOTS) in Nigeria. Math Modell Nat Phenom. 2007;2(1):101-13.

Endalamaw A, Ambachew S, Geremew D, Habtewold TD. HIV infection and unknown HIV status among tuberculosis patients in Ethiopia: A systematic review and meta-analysis. Int J Tuberc Lung Dis. 2019;23(2):187-94.

Enos M, Sitienei J, Ong’ang’o J, Mungai B, Kamene M, Wambugu J, Kipruto H, Manduku V, Mburu J, Nyaboke D, et al. Kenya tuberculosis prevalence survey 2016: Challenges and opportunities of ending TB in Kenya. PLoS One. 2018;13(12):e0209098.

Gelaw YA, Williams G, Soares Magalhães RJ, Gilks CF, Assefa Y. HIV prevalence among tuberculosis patients in Sub-Saharan Africa: a systematic review and meta-analysis. AIDS Behav. 2019;23(6):1561-75.

Global summary of the AIDS epidemic. Geneva: UNAIDS; 2017 [cited Feb 2 2023]. Available:https://www.unaids.org/sites/default/files/media_asset/20170720_Data_book_2017_en.pdf.

Global tuberculosis report 2022 [cited Feb 20 2023]. Available:https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022. Geneva: World Health Organization; 2022. License: CC BY-NCSA 3.0 IGO.

Gumel A, Song B. Existence of multiple stable equilibria for a multi-drug resistance model of mycobacterium TB. Mathematics Biosci. and engineering S. 2008;3:437-55.

Kirschner D. Dynamics of co-infection with M. tuberculosis and HIV-1. Theor Popul Biol. 1999;55(1):94-109.

Kumar S, Jain S. Assessing the efects of treatment in HIV-TB co-infection model. Eur Phys J Plus. 2018;133(8):294.

McHunu G, van Griensven J, Hinderaker SG, Kizito W, Sikhondze W, Manzi M et al. High mortality in tuberculosis patients despite HIV interventions in Swaziland. Public Health Action. 2016;6(2):105-10.

Mecha JO, Kubo EN, Nganga LW, Muiruri PN, Njagi LN, Ilovi S et al. Trends, treatment outcomes, and determinants for attrition among adult patients in care at a large tertiary HIV clinic in Nairobi, Kenya: A 2004-2015 retrospective cohort study. HIV Aids (Auckl). 2018;10:103-14.

Olaniyi S, Gbadamosi B, Olopade IA. Deterministic model for HIV infection dynamics with optimal control strategy using power series method. J Niger Math Soc (NMS). 2013;32(4):87-95.

Olopade IA, Adewale SO, Mohammed IT, Ajao SO, Oyedemi OT. Mathematical analysis of the role of detection in the dynamical spread of HIV-TB co-infection. Adv Math. 2016;11(10):5715-40.

Olopade IA, Adesanya AO, Mohammed IT, Afolabi MA, Oladapo AO. Mathematical analysis of the global dynamics of an SVEIR epidemic model with herd immunity. Int J Sci Eng Investig. (IJSEI). 2017;6(69):141-8.

Olopade AI, Adesanya AO, Akinwumi TO. Mathematical transmission of SEIR epidemic model with natural immunity. Asian J Pure Appl Math. 2021;3(1):19-29.

Olopade IA, Adewale SO, Muhammed IT, Adeniran GA, Ajao S, Ogunsola AW. Effect of effective contact tracing in curtaining the spread of Covid-19. Asian J Res Biosci. 2021;3(2):118-34.

Olopade IA, Ajao SO, Adeniran GA, Adamu AK, Adewale SO, Aderele OR. Mathematical transmission of tuberculosis (TB) with detection of infected Undetectected. Asian J Res Med Med Sci. 2022;4(1):100-19.

Pathmanathan I, Pasipamire M, Pals S, Dokubo EK, Preko P, Ao T et al. High uptake of antiretroviral therapy among HIV-positive TB patients receiving co-located services in Swaziland. PLOS ONE. 2018;13(5):e0196831. doi: 10.1371/journal.pone.0196831, PMID 29768503.

Shah NH, Sheoran N, Shah Y. Dynamics of HIV-TB co-infection model. Axioms. 2020;9(1). doi: 10.3390/axioms9010029.

Sharomi O, Podder CN, Gumel AB, Song B. Mathematical analysis of the transmission dynamics of HIV/TB co-infection in the presence of treatment. Math Biosci Eng. 2008;5(1):145-74. doi: 10.3934/mbe.2008.5.145, PMID 18193936.

Silva CJ, Torres DFM. Modeling TB-HIV syndemic and treatment. J Appl Math. 2014;2014:1-14. doi: 10.1155/2014/248407.

Singh R, Ali S, Jain M. Epidemic model of HIV/AIDS transmission dynamics with different latent stages based on treatment. Am J Appl Math. 2016;4:222-34.

Tanvi , Aggarwal R. Dynamics of HIV-TB coinfection with detection as optimal intervention strategy. Int J Non Linear Mech. 2020;120:Article ID 103388.

Wang W. Backwardbifurcationofan epidemicmodelwithtreatment. Math Biosci. 2006;201(1-2):58-71.

West RW, Thompson JR. Modeling the impact of hiv on the spread of tuberculosis in the United States. Math Biosci. 1997;143(1):35-60.

Wekesa E. HIV testing experiences in Nairobi slums: the good, the bad and the ugly. BMC Public Health. 2019;19(1): 1600.

WHO. Global tuberculosis report [technical report]. Geneva, Switzerland: World Health Organization; 2014.

World Health Organization. Global tuberculosis report; 2021.